

ISTITUTO ZOOPROFILATTICO SPERIMENTALE DELLA LOMBARDIA E DELL'EMILIA ROMAGNA

(ENTE SANITARIO DI DIRITTO PUBBLICO)

Centro di Referenza Nazionale per la Leptospirosi Via A. Bianchi, 9 – 25124 Brescia BS

TEL. 030 2290273-570

REPORT DEL RING TEST per la ricerca di LEPTOSPIRE PATOGENE IN CAMPIONI BIOLOGICI TRAMITE PCR

DISTRIBUZIONE (ROUND): 01/2014

Ente organizzatore: Istituto Zooprofilattico Sperimentale della Lombardia dell'Emilia Romagna

Centro di Referenza nazionale per la Leptospirosi

Via Bianchi, 9 25124 BRESCIA

Coordinatore del ring test: Dr.ssa Beatrice Boniotti

mariabeatrice.boniotti@izsler.it

Tel. 030 2290273

Esperto Statistico: Dr. ssa Dominga Avisani, Dr. Marco Bertoletti

dominga.avisani@izsler.it, marco.bertoletti@izsler.it

Tel. 030 2290376

Assicurazione qualità: Dr. Antonio Petteni

raq@izsler.it

Collaboratori tecnici: Sig. Arturo Scalvenzi, Sig.ra Anna Mangeli

INDICE

1. INTRODUZIONE	.3
2. CAMPIONI	.3
2.1Preparazione	3
2.2 Distribuzione	.3
2.3 Analisi statistica	4
2.4 Riservatezza	4
3. RISULTATI5	5
3.1 Decodifica dei campioni inviati	5
3.2 Metodiche utilizzate dai laboratori partecipanti	5
3.3 Omogeneità e stabilità5	5
3.4 Risultati Ring Test6	;
4. CONCLUSIONI	3

1. Introduzione

Dodici laboratori appartenenti agli Istituti Zooprofilattici competenti sono stati invitati a partecipare al secondo circuito interlaboratorio per la diagnosi di Leptospire patogene tramite PCR (1/2014). Tutti i laboratori hanno aderito al Ring Test entro i termini richiesti.

Ad ogni laboratorio è stato inviato il Protocollo Operativo e la Scheda di Registrazione dei Risultati. Ai laboratori partecipanti era richiesto di analizzare 10 campioni di sangue bovino con le metodiche PCR utilizzate per la diagnosi di Leptospirosi.

2. Campioni

2.1 Preparazione

Il pannello di campioni da analizzare comprendeva 10 campioni di sangue bovino (8 positivi, 2 negativi). Il sangue è stato prelevato in presenza di EDTA e contaminato artificialmente con diverso numero di copie genomiche di *L. borgpetersenii* sierovariante Tarassovi e *L. interrogans* sierovariante Pomona:

Tabella 1	Composizione	campioni

N° Campione	Sierovariante	Titolo (L./ml)
1	Tarassovi	10 ⁷
2	Tarassovi	10 ⁶
3	Tarassovi	10 ⁵
4	Tarassovi	5x10 ⁴
5	Negativo	Neg
6	Pomona	10 ⁷
7	Pomona	10 ⁶
8	Pomona	10 ⁵
9	Pomona	5x10 ⁴
10	Negativo	Neg

Ogni pannello di campioni inviato ai singoli laboratori è stato identificato con un codice numerico che individua il laboratorio e il campione.

2.2 Prove di Omogeneita' e Stabilita'

Dopo suddivisione di ogni campione in aliquote da 0.5 ml e congelamento a -20 °C, al fine di valutarne l'omogeneità, due aliquote di ogni livello di concentrazione sono state analizzate in duplicato prima dell'invio dei campioni ai laboratori partecipanti.

Al fine di valutare la stabilità dei campioni una aliquota è stata analizzata in duplicato dopo il termine ultimo di invio dei risultati (31/01/2015).

2.3 Distribuzione

I laboratori sono stati avvisati dell'invio dei campioni mediante posta elettronica il 16/12/2014. I campioni sono stati inviati congelati in ghiaccio secco mediante corriere il giorno 16/12/2014 e il termine per l'invio dei risultati è stato fissato al 31/01/2015.

A tutti i laboratori partecipanti è stato richiesto di comunicare mediante posta elettronica l'arrivo dei campioni presso il laboratorio. L'arrivo era previsto entro 2-3 giorni dalla spedizione. I campioni sono pervenuti a tutti i laboratori entro 3 giorni dalla spedizione. Nel caso di due laboratori, i campioni sono pervenuti con alcune etichette staccate rendendo impossibile l'identificazione corretta dei campioni. Pertanto un nuovo pannello di campioni è stato inviato ai suddetti laboratori in data 7/01/2015.

2.3 Analisi statistica

Ai fini della valutazione statistica, i risultati delle prove condotte sui singoli campioni sono stati classificati come corretti quando conformi al risultato atteso. Sono state considerate due categorie di risultati: "Negativo" e "Positivo".

L'analisi statistica è stata svolta ai fini di valutare i risultati ottenuti da ciascun laboratorio. Tale analisi è stata eseguita attraverso il calcolo dell'indice di accuratezza (proporzione dei risultati corretti) per ciascuno dei 12 laboratori partecipanti al ring test.

Il coefficiente K di Cohen è stato calcolato al fine di valutare la concordanza ottenuta fra gli esiti di ciascun laboratorio e il risultato atteso.

Le analisi sono state eseguite utilizzando il software R versione 3.1.2 con l'utilizzo del package "fmsb".

2.4 Riservatezza

Per garantire la riservatezza dei dati, i laboratori sono stati identificati mediante un codice, che è stato utilizzato per tutte le comunicazioni riguardanti il laboratorio stesso.

I dati, trattati in forma confidenziale e riservata, vengono utilizzati dall'Ente organizzatore del ring test esclusivamente per l'analisi e la valutazione dei risultati.

3. Risultati

3.1 Decodifica dei campioni inviati

La decodifica dei campioni inviati è riportata nella tabella 3.

Tabella 3. Decodifica dei campioni circuito Leptospire PCR 01/2014

Campioni	Identificativo Laboratorio											
	18	53	59	73	77	99	188	266	267	268	269	270
1	389	114	363	505	400	134	219	434	132	116	136	128
2	504	249	532	603	502	325	360	528	145	175	437	148
3	547	282	860	664	560	625	580	766	399	329	599	283
4	599	307	864	793	623	738	653	811	402	728	640	287
5	961	464	934	906	766	748	709	952	850	840	646	375
6	147	139	262	648	220	295	274	101	226	336	129	409
7	226	359	272	657	621	302	448	182	280	376	781	487
8	254	563	410	659	851	643	564	795	525	485	837	534
9	423	726	522	693	866	734	693	836	678	834	844	905
10	433	752	569	847	961	922	940	964	694	871	956	985

3.2 Metodiche utilizzate dai laboratori partecipanti

Le metodiche utilizzate per l'estrazione di DNA sono riassunte in Tabella 4 mentre quelle utilizzate nei protocolli PCR sono riassunte nella Tabella 5.

Tabella 4. Metodi di estrazione

Laboratorio	Estrazione
18	QIAamp DNA MINI KIT (Qiagen)
53	QIAamp DNA MINI KIT (Qiagen) + EL buffer
59	QIAamp DNA MINI KIT (Qiagen)
73	Minikit Dneasy Tissue (Qiagen)
77	Qiagen protocollo fluidi
99	PureLink Genomic DNA (Invitrogen)
188	PureLink Genomic DNA (Invitrogen)
266	Kit Qiagen Blood and Tissue
267	Maxwell 16 Blood DNA Purification Kit (Promega).
268	PureLink Genomic DNA (Invitrogen)
269	QIAamp cador Pathogen Mini kit (Qiagen)
270	PureLink Genomic DNA (Invitrogen)

Tabella 5. Metodi di rilevamento

Lab.	Target	Tipologia di PCR	Soglia di positività	Controllo interno di estrazione	Controllo interno di amplificazione	Validazione
18	16SrRNA	Real-Time (TaqMan)	Ct ≤38	no	no	no
18	lipL32	End-point	-	no	no	no
53	16SrRNA	Real-Time (TaqMan)	Ct <45	no	si	no
59	lipL32	Real-Time (TaqMan)	Ct <40	no	si	sì
73	lipL32	Real-Time (TaqMan)	Ct <40	si	si	no
77	hap	End-point	-	no	no	no
99	lipL32	Real-Time (TaqMan)	1GE/µl	no	si	no
188	lipL32	Real-Time (TaqMan)	Ct <40	si	si	sì
266	lipL32	Real-Time (TaqMan)	Ct <40	si	si	sì
267	lipL32	Real-Time (TaqMan)	Ct ≤40	no	si	sì
268	lipL32	Real-Time (TaqMan)	Ct ≤40	si	si	sì
269	lipL32	Real-Time (TaqMan)	Ct ≤40	no	si	sì
270	lipL32	Real-Time (TaqMan)	Ct ≤40	si	si	sì

3.3 Omogeneità e stabilità

L'omogeneità e la stabilità, eseguite analizzando aliquote indipendenti, rispettivamente prima dell'invio dei campioni e dopo il ricevimento dei risultati, è stata valutata favorevolmente non mostrando differenze significative tra un'aliquota e l'altra.

3.4 Risultati Ring test

Sono pervenuti i risultati da tutti i 12 laboratori partecipanti. I risultati delle prove sono riportati in Tabella 6

Tabella 6 – PCR: Risultati qualitativi ottenuti dai Laboratori partecipanti

			Identificativo laboratorio										
		18	53	59	73	77	99	188	266	267	268	269	270
	Risultato atteso	EP/RT	RT	RT	RT	EP	RT	RT	RT	RT	RT	RT	RT
1	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
2	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
3	Р	Р	Р	Р	Р	Р	Р	Р	N	Р	Р	Р	Р
4	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
5	N	N	Ν	Ν	Ζ	N	N	N	Ν	N	N	N	N
6	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
7	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
8	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
9	Р	Р	N	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р
10	N	N	N	N	N	N	N	N	N	N	N	N	N

EP: PCR end-point, RT: PCR Real Time

I risultati falsi negativi sono indicati in rosso

Accuratezza

In Tabella 7 è riportata la sintesi per ciascuno dei 12 laboratori che hanno partecipato al ring test effettuando 10 prove, oltre al risultato complessivo (totale di 120 campioni).

La colonna che indica l'accuratezza mostra che il <u>98%</u> (118/120) dei campioni è stato correttamente classificato. In particolare, per ciascun laboratorio, almeno 9 campioni su 10 sono stati correttamente identificati. L'intervallo di confidenza al 95% indica un limite inferiore per l'accuratezza pari al 94.1%.

Tab. 7 – Accuratezza degli esiti per ciascun laboratorio e per il totale di essi. Gli intervalli di confidenza sono calcolati utilizzando il metodo binomiale

Lab.	Risultati Corretti/Totale	Accuratezza	95%	C.I.
18	10/10	1.0	0.692	1.000
53	9/10	0.9	0.555	0.997
59	10/10	1.0	0.692	1.000
73	10/10	1.0	0.692	1.000
77	10/10	1.0	0.692	1.000
99	10/10	1.0	0.692	1.000
188	10/10	1.0	0.692	1.000
266	9/10	0.9	0.555	0.997
267	10/10	1.0	0.692	1.000
268	10/10	1.0	0.692	1.000
269	10/10	1.0	0.692	1.000
270	10/10	1.0	0.692	1.000
Tot	118/120	0.98	0.941	0.998

Analisi Qualitativa Leptospire patogene: Kappa di Cohen

Per confrontare l'efficacia dei risultati con il valore atteso si può utilizzare la statistica <u>K di Cohen</u>, che permette di calcolare il valore della concordanza fra i risultati per ciascun laboratorio e il valore atteso al netto della concordanza che si avrebbe con una classificazione puramente casuale dei campioni.

In altre parole, l'indice K di Cohen indica quanta parte della corretta classificazione realizzata da ciascun laboratorio sia dovuta alla reale capacità del laboratorio di testare e non sia dovuta ad una classificazione casuale.

Per calcolare l'indice Kappa di Cohen è necessario, per ciascun laboratorio, creare una tabella a doppia entrata fra gli esiti riscontrati dal laboratorio e quelli del gold standard. Tale matrice prende il nome di "matrice di confusione".

Per i laboratori 18,59,73,77,99,188,267,268,269 e 270 è possibile generare la seguente "matrice di confusione".

		Gold standard				
		POSITIVI	NEGATIVI	TOT		
	POSITIVI	8	0	8		
Esito laboratori	NEGATIVI	0	2	2		
	TOT	8	2	10		
Kappa di (Cohen	1.00				

Un valore per la K di Cohen pari a 1 indica <u>perfetta concordanza</u> tra i laboratori presi in considerazione e il valore atteso.

Per i laboratori 53 e 266, invece la "matrice di confusione" corrispondente ai risultati è la seguente:

		Gold standard							
		POSITIVI	NEGATIVI	TOT					
	POSITIVI	7	0	7					
Esito laboratori	NEGATIVI	1	2	3					
	TOT	8	2	10					
Kappa di C	Cohen	0.74	95% C.I. (0.25	; 1.00)					

Adottando la classificazione utilizzata da Landis & Koch (1977), un valore per il K di Cohen pari a 0.74 indica una concordanza sostanziale tra i risultati attesi e gli esiti dei laboratori 53 e 266.

Per i laboratori 53 e 266 è possibile stimare un intervallo di confidenza al 95% per il valore di K: tale intervallo ha come limite inferiore il valore 0.25 (concordanza mediocre) e come limite superiore 1 (perfetta concordanza). Questo permette di sostenere che vi sia una concordanza comunque buona anche tenendo conto della non elevata numerosità di campioni. Il test per verificare che la K di Cohen sia statisticamente uguale a 0 (non concordanza) restituisce un p-value uguale a 0.03, indicando che statisticamente anche i laboratori 53 e 266 mostrano accordo significativo con i risultati attesi.

Valori Ct di PCR Real Time

A titolo informativo si mostrano i risultati dei valori Ct ottenuti in Real time PCR (tabella 8).

Tabella 8. Risultati delle PCR Real Time comprensivi dei valori Ct

Campion e	18	53	59	73	99	188	266	267	268	269	270
1	25,2	28,22	29,09	25,03	25	23,8	25,14	21,3	26.91	21,22	25,34
2	28,8	32,17	31,41	28,41	29,5	27,7	28,64	24,9	30.75	25,99	28,28
3	32,71	34,81	35,58	32,12	33	30,8	N	27,8	35.47	28,03	32,1
4	33,5	33,57	35,37	32,45	33	31,3	34,72	29	34.73	28,97	33,34
5	N	N	N	N	N	N	N	Ν	N	N	N
6	23,78	30,86	31,44	27,96	27,5	25,9	32,37	26,9	30.41	25,42	27,44
7	27,5	34,63	34,33	31,09	31	29,2	33,87	29,7	33.38	27,22	30,44
8	30	38,28	38,44	33,57	33	33.1	36,05	33	37.05	32,84	33,96
9	32,8	Ν	38,26	34,74	34	34,9	34,31	33,5	38.25	32.04	34,67
10	Ν	Ν	N	Ν	Ν	Ν	Ν	Ν	Z	Ν	N

Si osserva che i laboratori 53, 59 e 268 hanno valori di Ct sistematicamente più elevati rispetto ai restanti laboratori, con positività a volte vicine al limite di cut-off utilizzato, evidenziando un possibile problema di sensibilità che potrebbe manifestarsi in caso di campioni border-line.

4. Conclusioni

Complessivamente la prova valutativa ha mostrato un risultato soddisfacente e piuttosto omogeneo tra i partecipanti. I risultati falsi negativi di 2 laboratori sono stati ottenuti sui campioni con la concentrazione più bassa di leptospire nel campione, pertanto non si ritiene necessaria nessuna azione correttiva.