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This Research Communication investigated the potential of mid-infrared spectroscopy to predict
detailed mineral composition of bovine milk. A total of 153 bulk milk samples were analysed for
contents of Ca, Cl, Cu, Fe, K, Mg, Na, P and Zn. Also, soluble and colloidal fractions of Ca, Mg
and P were quantified. For each milk sample the mid-infrared spectrum was captured and stored.
Prediction models were developed using partial least squares regression and the accuracy of predic-
tion was evaluated using both cross- and external validation. The proportion of variance explained
by the prediction models in cross-validation ranged from 34% (Na) to 77% (total P), and it ranged
from 13% (soluble Mg) to 54% (Cl−) in external validation. The ratio of the standard deviation of
each trait to the standard error of prediction in external validation, which is an indicator of the prac-
tical utility of the prediction model, was low and never greater than 2. Results from the current study
supported the limited usefulness of mid-infrared spectroscopy to predict minerals present in low con-
centration in bulk milk. For major mineral components, results from the present research did not
match previous findings demonstrating the need for further studies using larger reference datasets.
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The main milk minerals, according to their concentration, are
K, Ca, P, Cl−, Na and Mg. Other minerals, such as Fe, Zn and
Cu, are present in traces (<10 mg/100 g). Some of them (Na,
K and Cl−) are in the soluble phase of milk and contribute,
together with lactose, to the maintenance of the osmotic pres-
sure of milk (Holt, 2011). Ca, P and Mg are in equilibrium
between the soluble and the colloidal phases of milk,
where they interact with the casein (CN) fractions to form
the CNmicelles. Interactions between micelles are prevented
by a protruding, negatively charged, layer of κ-CN on their
surface. The inner side of micelles is stabilised by secondary
interactions between highly phosphorylated CN (αS1-, αS2-, β-
CN), Ca and colloidal calcium phosphate (CCP).

The essential step in all cheese-makings technologies is
coagulation. Favourable rennet coagulation properties (i.e.
short coagulation time and strong curd firming capacity)
are associated with greater cheese yield, and produce
curd and cheese with optimal rheological properties
(Aleandri et al. 1989). The positive association of minerals

content with rennet coagulation properties of milk was
reported by Malacarne et al. (2014).

To date, the methods to assess milk minerals have been
time-consuming and expensive. Thus, if a fast, practical tech-
nique, such as mid-infrared spectroscopy (MIRS), could be
shown to be reliable and accurate, there could be significant
benefit for manufacturers. However, few reports have inves-
tigated the potential of MIRS to predict milk mineral compos-
ition (Soyeurt et al. 2009; Toffanin et al. 2015; Visentin et al.
2016) and no studies have investigated the potential of MIRS
to predict detailed mineral composition, i.e. colloidal and
soluble fractions of Ca, Mg, and P, and less represented
minerals such as Cu, Fe and Zn. The aim of the present
study was to develop MIRS models for the prediction of
detailed mineral composition of bovine milk.

Materials and methods

Milk samples

One hundred fifty-three bulk milk samples collected from June
to November 2014 in Italian Holstein Friesian herds located in*For correspondence; e-mail: giulio.visentin@phd.unipd.it
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northern Italy were available for the analysis. Each sample
(without preservative) was collected from the herd tank at
the end of the morning milking and transported to the milk
laboratory of the Istituto Zooprofilattico Sperimentale della
Lombardia e dell’Emilia Romagna (Brescia, Italy) for MIRS
spectra analysis using Milkoscan FT6000 (Foss Electric,
Hillerød, Denmark). A sample aliquot was cooled to 4 °C,
and delivered the next morning to the laboratory of the
Department of Veterinary Science of the University of Parma
(Parma, Italy) where it was analysed the same day for chemical
composition using standard methods.

Milk analyses

Fat was determined by infrared analysis with Milko-Scan
134 A/B (Foss Electric, Hillerød, Denmark). Total nitrogen
(TN) in milk and non-CN nitrogen (NCN) in pH 4·6 acid
whey, were assessed by the Kjeldahl method. From these
nitrogen fractions, crude protein (CP; TN × 6·38), CN nitro-
gen (CNT = TN−NCN) and CN (CNT × 6·38) were calcu-
lated. Dry matter was determined by placing 10 g milk in
a drying oven at 102 °C. Ash concentration was determined
using the gravimetric method after calcination of the milk
sample in a muffle furnace at 530 °C. Total contents of
Ca, Mg, Na, K, Fe, Zn and Cu, and soluble concentrations
of Ca and Mg were assessed in milk and in ultrafiltrate
whey, respectively, by atomic absorption spectroscopy
(AAS) (Perkin-Elmer 1100 B, Waltham, MA, USA) according
to De Man (1962). Total P and soluble P were assessed in
milk and in skimmed milk ultrafiltrate (cut off 30 000 Da)
with the colorimetric method proposed by Allen (1940).
Colloidal concentrations of Ca, P and Mg were calculated
as the difference between their total and soluble content.
Ultrafiltration was carried out in a stirred ultrafiltration cell
(Model 8200, Millipore Corporation, Bedford, MA, USA),
at room temperature. Polyethersulfone ultrafiltration mem-
branes (nominal molecular weight limit 30 000 Da) were
purchased from Millipore (Millipore Corporation, Bedford,
MA, USA). Chloride was measured by titration with
AgNO3 using the volumetric method of Charpentier-
Volhard (Savini, 1946).

Statistical analysis

All studied traits were normally distributed. Observations
were defined as outliers if they deviated more than 3 stand-
ard deviations (SD) from the mean of each mineral. Spectral
data expressed in transmittance were converted to absorb-
ance as log10(1/transmittance). Spectral regions between
1700 and 1580 cm−1, and between 3660 and 2990 cm−1

were discarded prior to the development of prediction
models because of low signal-to-noise ratio. Partial least
squares regression was performed using SAS software (SAS
Institute Inc., Cary, NC, USA) to generate the prediction
models, which included the vector of each individual milk
mineral as dependent variable, and the matrix of the
edited spectra as predictor. To develop and validate the

prediction models, the dataset was sorted by the dependent
variable and divided into two different sets, namely the cali-
bration set (75% of the observations) and the validation
dataset (25% of the observations). The former was used to
develop the prediction models, and the latter to externally
validate and evaluate the predictive ability of the models.
A total of 4 iterations were repeated for each trait: the first
iteration excluded from the calibration dataset the first
observation every 4 (including this observation in the valid-
ation dataset), the second iteration excluded from the cali-
bration dataset the second observation every 4, and
similarly for the third and fourth observation. In each iter-
ation, one-at-a-time cross-validation was performed in the
calibration dataset. Regardless the iteration, the mean and
SD of each mineral were similar in both calibration and
validation sets. The optimal number of model factors (#PC)
was defined as the lowest number of #PC to achieve the
lowest root mean predicted residual sum of squares.
Goodness-of-fit statistics were the coefficient of determin-
ation in cross-validation (R2

CV), the standard error of pre-
diction in cross-validation (SEPCV), the coefficient of
determination in external validation (R2

V), the standard
error of prediction in the external validation (SEPV), and
the ratio of prediction to deviation (RPD), calculated as the
ratio of the SD of the trait to the SEPV. In external validation,
reference values were linearly regressed on the respective
predicted values to calculate the linear regression coeffi-
cient (slope) and a t-test was carried out to evaluate if the
slope differed significantly from 1. Bias was calculated as
the average difference between the reference values and
the respective predicted values, and a t-test was carried
out to evaluate if the bias was significantly different from 0.

Results and discussion

Crude composition (Table 1) was typical for bulk milk col-
lected from Italian Holstein Friesian cattle herds in Italy
(Malacarne et al. 2014). The colloidal fractions of Ca and
P were 73 and 55% of their total content, respectively.
About 60% of colloidal P was in the form of CCP (inor-
ganic-P), and the remaining in phosphorylated CN residues
(Data not shown). The concentration and distribution of the
macro-elements were comparable with those reported by
Malacarne et al. (2014). Also the contents of Cu and Zn
were within the ranges typical of cow’s milk, whereas Fe
content was above the upper limit reported by Hermansen
et al. (2005).

According to fitting statistics (Table 2), the most and less
accurate prediction models in cross-validation and external
validation were for total P (R2

CV of 0·77 and SEPCV of 1·49
mg/100 g) and Na (R2

CV of 0·34 and SEPCV of 4·73 mg/100
g), and Cl− (R2

V of 0·54 and SEPV of 3·44 mg/100 g) and
soluble Mg (R2

V of 0·13 and SEPV of 0·41 mg/100 g),
respectively. In external validation, irrespective of the trait,
the average bias of prediction did not differ (P > 0·05) from
zero. In all instances, the slope of the predicted minerals
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linearly regressed on the respective measured minerals
differed from unity (P < 0·05). The RPD values varied
between 1·02 (soluble Mg prediction model) and 1·42
(Cl− prediction model). The feasibility of MIRS to predict
novel milk quality traits has been reviewed by De Marchi
et al. (2014). Although the prediction of milk minerals,
including Ca, K, Mg, Na and P using MIRS has been previ-
ously reported by Soyeurt et al. (2009), Toffanin et al.
(2015), and Visentin et al. (2016), to our knowledge no

other studies have attempted to assess the predictive
ability of MIRS for detailed mineral composition. The R2

CV

of prediction models for Ca, K, Mg, Na and P was generally
poorer than findings retrieved from the literature; indeed,
R2

CV ranged from 0·36 (Na) to 0·87 (Ca) in Soyeurt et al.
(2009), 0·56 (Ca) to 0·70 (P) in Toffanin et al. (2015), and
0·42 (Na) to 0·71 (P) in Visentin et al. (2016). These differ-
ences could depend on the reference method used to
assess the content of minerals. In the present study,

Table 1. Descriptive statistics of milk quality traits and detailed mineral composition after edits

Trait N Mean SD CV Minimum Maximum

Dry matter, g/100 g 148 12·83 0·37 0·03 11·64 14·22
Fat, g/100 g 149 3·93 0·23 0·06 3·24 4·48
Ash, g/100 g 148 0·73 0·02 0·03 0·68 0·79
Crude protein, g/100 g 149 3·29 0·12 0·04 2·89 3·62
Casein, g/100 g 149 2·53 0·10 0·04 2·22 2·77
Crude whey protein, g/100 g 148 0·76 0·04 0·05 0·66 0·89
Casein number, % 148 76·78 0·89 0·01 74·13 78·70
Total Ca, mg/100 g 147 114·69 3·26 0·03 109·37 123·72
Soluble Ca, mg/100 g 149 31·14 3·01 0·10 23·93 38·14
Colloidal Ca, mg/100 g 149 83·57 4·68 0·06 73·20 96·05
Chloride (Cl−), mg/100 g 149 93·60 4·80 0·05 79·88 107·94
Cu, mg/kg 149 0·15 0·06 0·40 0·06 0·37
Fe, mg/kg 138 1·35 0·52 0·39 0·05 2·85
K, mg/100 g 149 147·56 9·30 0·06 121·08 182·14
Total Mg, mg/100 g 148 10·10 0·47 0·05 8·55 11·52
Soluble Mg, mg/100 g 147 7·46 0·40 0·05 6·40 8·41
Na, mg/100 g 149 50·37 5·83 0·12 37·37 69·24
Total P, mg/100 g 149 90·52 3·09 0·03 82·54 97·14
Soluble P, mg/100 g 149 39·01 3·70 0·09 28·63 51·99
Colloidal P, mg/100 g 144 49·46 3·44 0·07 41·32 57·52
Zn, mg/kg 148 5·76 0·63 0·11 4·35 7·54

CV, coefficient of variation.

Table 2. Fitting statistics for detailed mineral composition prediction models using cross- and external validation procedures

Trait #PC SEPCV R2
CV Slope (SE) Bias SEPV R2

V RPD

Total Ca, mg/100 g 10 2·32 0·49 0·36 (0·11) −0·01 2·96 0·25 1·12
Soluble Ca, mg/100 g 8 2·05 0·54 0·43 (0·10) 0·05 2·48 0·35 1·24
Colloidal Ca, mg/100 g 9 2·97 0·60 0·48 (0·11) −0·22 3·84 0·37 1·24
Chloride (Cl−), mg/100 g 13 2·49 0·73 0·62 (0·10) 0·10 3·44 0·54 1·42
Cu, mg/kg 9 0·04 0·58 0·47 (0·10) 0·01 0·05 0·40 1·27
Fe, mg/kg 9 0·40 0·40 0·26 (0·11) 0·01 0·51 0·15 1·04
K, mg/100 g 10 6·05 0·58 0·43 (0·10) −0·07 7·85 0·34 1·21
Total Mg, mg/100 g 5 0·38 0·37 0·30 (0·08) 0·03 0·41 0·26 1·18
Soluble Mg, mg/100 g 8 0·31 0·38 0·25 (0·11) −0·02 0·41 0·13 1·02
Na, mg/100 g 6 4·73 0·34 0·27 (0·08) −0·05 5·16 0·25 1·15
Total P, mg/100 g 15 1·49 0·77 0·69 (0·11) −0·26 2·24 0·53 1·41
Soluble P, mg/100 g 11 2·24 0·63 0·45 (0·10) 0·12 3·12 0·34 1·20
Colloidal P, mg/100 g 15 1·75 0·73 0·52 (0·12) −0·09 2·87 0·35 1·27
Zn, mg/kg 6 0·51 0·35 0·25 (0·09) 0·01 0·58 0·20 1·11

#PC, number of model factors; SEPCV, standard error of prediction in cross-validation; R2
CV, coefficient of determination in cross-validation; Slope, linear

regression coefficient of reference values on predicted values; Bias, average difference between the reference values and the respective predicted values;
SEPV, standard error of prediction in external validation; R2

V, coefficient of determination in external validation; RPD, ratio of prediction to deviation, calcu-
lated as the ratio of the SD of the trait to the SEPV.
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samples were mineralised before being analysed by AAS
(Ca, Mg, Na, K, and Cl-) or the colorimetric method (P).
Preliminary mineralisation of samples was performed also
in Toffanin et al. (2015) and Visentin et al. (2016), although
these authors used inductively coupled plasma optical emis-
sion spectrometry (ICP-OES) to determine milk minerals
content. The reference method used by Soyeurt et al.
(2009) was ICP-OES as well, but they did not carry out min-
eralisation of samples before ICP-OES analysis, because of
the increased possibility of sample loss induced by this treat-
ment (Soyeurt et al. 2009). The low content of Zn, Fe and Cu
could represent an important challenge, if not a limit, for a
quick and in-line monitoring using infrared technologies at
both the research and commercial levels, as highlighted
by the poor accuracy of prediction of these minerals in
external validation.

In conclusion, findings of the present research indicated
that MIRS is not able to predict the detailed mineral compos-
ition of bulk milk with sufficient accuracy, especially for
those minerals that are present at low concentrations.
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