

Centro Referenza Nazionale Qualità Latte Bovino I.Z.S.L.E.R. – Brescia

PROGETTO UNIFICAZIONE CONVERSIONE Bactoscan FC

A. Marcolini

3- COSA E' STATO FATTO (finora)

L 320/38 IT Gazzetta ufficiale dell'Unione europea 18.11.2006

"Il seguente allegato VI bis sui metodi di prova relativi al latte crudo e al latte trattato termicamente è aggiunto al regolamento (CE) n. 2074/2005:"

«ALLEGATO VI BIS

METODI DI PROVA RELATIVI AL LATTE CRUDO E AL LATTE TRATTATO TERMICAMENTE

CAPITOLO I

DETERMINAZIONE DELLA CONTA BATTERICA MICROBICA

- 1. Per la verifica dei criteri di cui all'allegato III, sezione IX, capitolo I, parte III, del regolamento (CE) n. 853/2004 vanno applicate come metodi di riferimento le seguenti norme:
- a) EN/ISO 4833 per la conta delle colonie a 30°C;

.

- 2. È accettabile l'impiego di metodi analitici alternativi:
- a) per la conta delle colonie a 30°C, qualora i metodi siano convalidati in base al metodo di riferimento di cui al punto 1, lettera a), conformemente al protocollo stabilito dalla norma EN/ISO 16140 od ad altri protocolli simili riconosciuti a livello internazionale. In particolare, il rapporto di conversione tra un metodo alternativo e il metodo di riferimento di cui al punto 1, lettera a), è stabilito conformemente alla norma ISO 21187;

LE NORME DI RIFERIMENTO

ISO 16140:2003 *Microbiology of food and animal feeding stuffs – Protocol for the validation of alternative methods*

ISO 21187:2004 *Milk* – Quantitative determination of bacteriological quality – Guidance for establishing and verifying a conversion relationship between routine method results and anchor method results

ISO 21187:2004 ORGANIZZAZIONE

"Caso a): ambedue i metodi di routine e di riferimento sono eseguiti completamente in un laboratorio.

Nota: a causa della instabilità e variabilità dello stato batteriologico dei campioni di latte la relazione di conversione più robusta si otterrà in queste condizioni"

"Caso b): il metodo di routine è eseguito in diversi laboratori, mentre il metodo di riferimento è condotto in un unico laboratorio. Necessità di prevedere e organizzare le modalità di trasporto dei campioni."

"Caso c): ambedue i metodi di routine e di riferimento sono eseguiti in diversi laboratori . come per il caso b) sussiste la necessità di prevedere e organizzare le modalità di eventuale trasporto dei campioni."

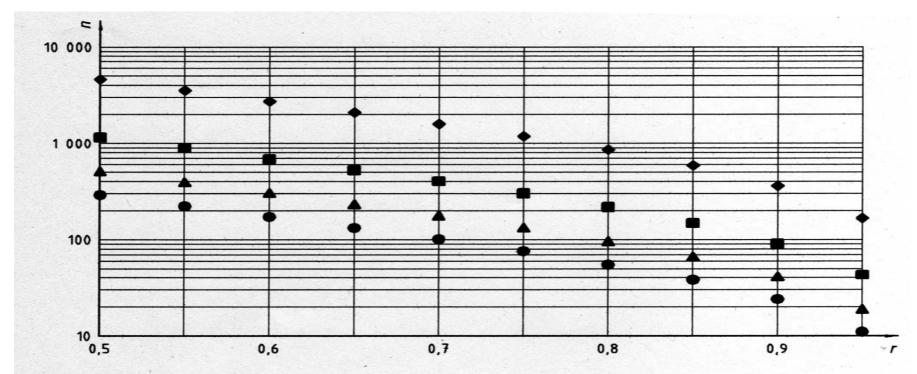
ISO 21187:2004 5.2 CAMPIONI DI PROVA (1)

5.2.1. CALCOLO DEL NUMERO DEI CAMPIONI DI PROVA

$$n = \left[\frac{t^2 \cdot (1 - r^2)}{\left(\delta^2 \cdot r^2\right)}\right] + 1$$

n = numero di campioni

 $t = valore\ distribuzione\ t - Student\ al\ 95\%$


 δ = errore relativo tollerabile per la stima della regressione (0,1 è considerato appropriato)

 $r = coefficiente\ di\ correlazione\ stimato$

ISO 21187:2004 5.2 CAMPIONI DI PROVA (2)

5.2.1. CALCOLO DEL NUMERO DEI CAMPIONI DI PROVA

Key

- δ = 0,05
- $\delta = 0.10$
- \triangle $\delta = 0.15$
- δ = 0,20

where δ is the relative error of estimation

Figure A.1 — Plot of number of samples n against correlation r for $\alpha = 0.05$

ISO 21187:2004 5.2 CAMPIONI DI PROVA (3)

5.2.2. RANGE DEI CAMPIONI DI PROVA

"I livelli di determinazione devono coprire uniformemente <u>il</u> <u>range di interesse</u> per il metodo di routine in oggetto, <u>all'interno del range di misura</u>.

Nel caso di trasformazione prima del trattamento statistico dei dati, le coppie di dati dovrebbero coprire uniformemente la scala di valori trasformati."

Performance dello strumento (Foss Italia S.p.A. P/N 1025204 1IT):

"range tipico di misura: da 5000 a un massimo di 20 milioni di BC/mL"

ISO 21187:2004 5.2 CAMPIONI DI PROVA (4)

5.2.2. RANGE DEI CAMPIONI DI PROVA

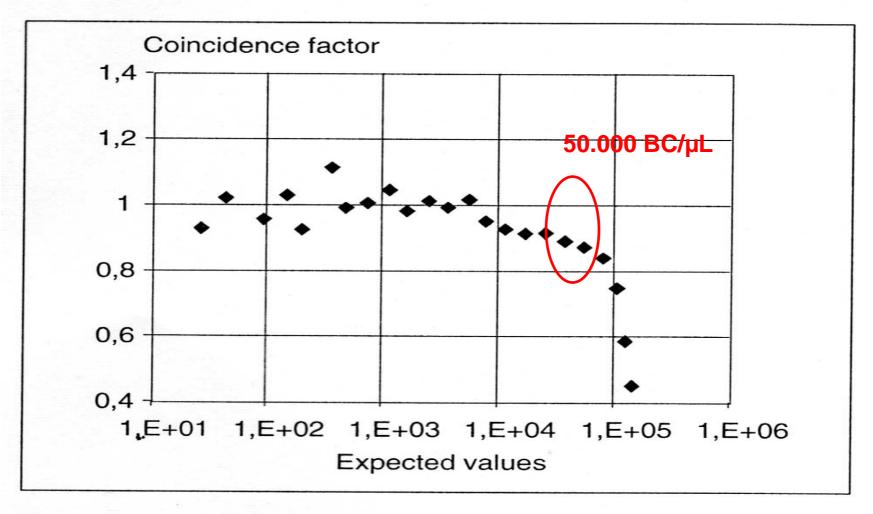


Fig. 4: Linearity: distribution of the coincidence factor

ISO 21187:2004 5.2 CAMPIONI DI PROVA (5)

5.2.3. CAMPIONI RAPPRESENTATIVI

"È di elevata priorità lavorare con campioni di prova naturali. I campioni di prova devono essere rappresentativi dei diversi livelli nella popolazione in considerazione"

"Nelle analisi per il metodo di routine dev'essere seguita la normale procedura in uso. Questo implica che le condizioni di campionamento, conservazione e trasporto dei campioni durante l'intera procedura dovranno aderire alle condizioni per le quali l'equazione di conversione dovrà essere applicata."

ISO 21187:2004 5.4. ANALISI

"Ogni campione di prova dev'essere analizzato in doppio, sia con il metodo di routine che con quello di riferimento,

in stretta aderenza alle procedure standardizzate. Quando si utilizzano diluizioni decimali nel metodo di riferimento, queste vanno scelte in maniera da ottenere risultati validi nel range di interesse."

ISO 21187:2004 5.5 CALCOLI (1)

5.5.1. NOTE GENERALI

"....Il diagramma di dispersione dovrebbe essere tale da suggerire una relazione lineare fra i due metodi nell'intero range. In caso contrario un'appropriata trasformazione dei dati dovrà essere usata per conseguire una relazione lineare."

"...Per gli scopi della presente norma, si assume l'esistenza di una relazione lineare"

ISO 21187:2004 5.5 CALCOLI (2)

5.5.1. NOTE GENERALI

"In genere l'asse verticale Y viene utilizzato per il metodo di routine (variabile dipendente) e l'asse orizzontale X (variabile indipendente) per il metodo di riferimento. Se l'errore di ripetibilità del metodo di riferimento risulta più ampio di quello del metodo di routine (rapporto >2) gli assi X e Y devono essere permutati prima di procedere alla stima della regressione (iso 16140:2003, 6.2.1.3.2.)

RIPETIBILITA' DEL METODO DI ROUTINE (1)

LE SPECIFICHE STRUMENTALI RIPORTANO:

livello	ripe	tibilità	riprod	lucibilità
	d.s.	CR95%	d.s.	CR95%
<10	0,150	1,7	0,300	6,1
10	0,070	0,6	0,110	1,0
50	0,050	0,4	0,070	0,6
>200	0,040	0,3	0,060	0,5
1000	0,030	0,2	0,050	0,4

RIPETIBILITA' DEL METODO DI ROUTINE (2)

sulla base dei dati, utilizzando la formula indicata in ISO 8196-1:2000 punto 6.1.3. :

$$S_r = \left(\frac{1}{2q} \cdot \sum_{i=1}^q w_i^2\right)^{\frac{1}{2}}$$

			Classe (BC FC /µL)								
					d:201-						
		a:<10	b:10-50	c:51-200	1000	e:>1000	totale				
totale	n° dati	15	273	474	347	438	1554				
lotale	Sr	0,14	0,06	0,04	0,02	0,02	0,04				
Sr attesa max:			0,07	0,05	0,04						
	Sr tipica:		0,06	0,04	0,02						

RIPETIBILITA' DEL METODO DI RIFERIMENTO (1)

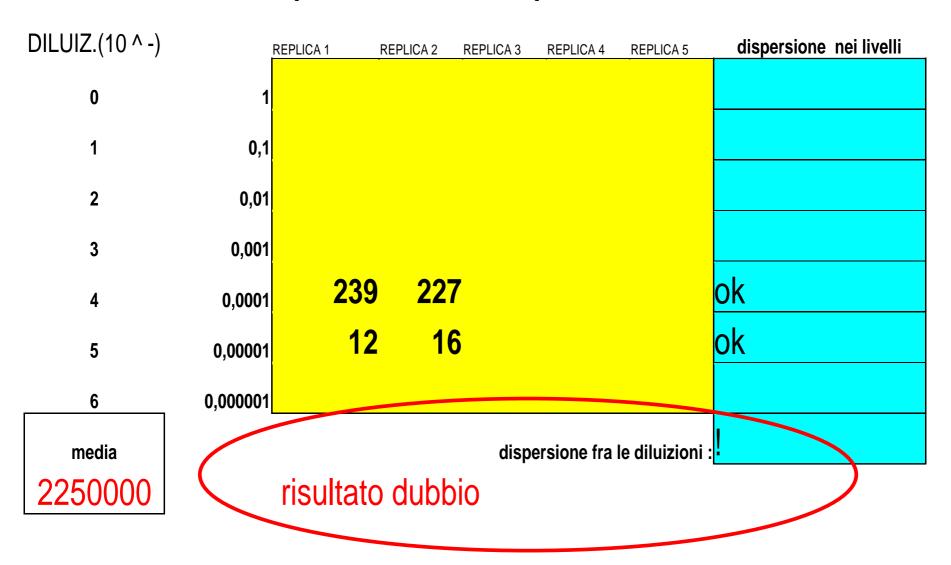
UNI EN ISO 4833:2004 10.2.2. Ripetibilità:

"La differenza assoluta tra due risultati di prove singole indipendenti, ottenuti utilizzando lo stesso metodo su materiale di prova identico nello stesso laboratorio dallo stesso operatore utilizzando la stessa attrezzatura entro un breve intervallo di tempo, non dovrebbe essere maggiore del limite di ripetibilità, r = 0.25, in log10 microrganismi per millilitro (corrispondenti a 1,8 sulla scala normale in microrganismi per millilitro)"

$$r = S_r \cdot 2 \cdot \sqrt{2}$$
 ; $S_r = 0.088 \log_{10}$

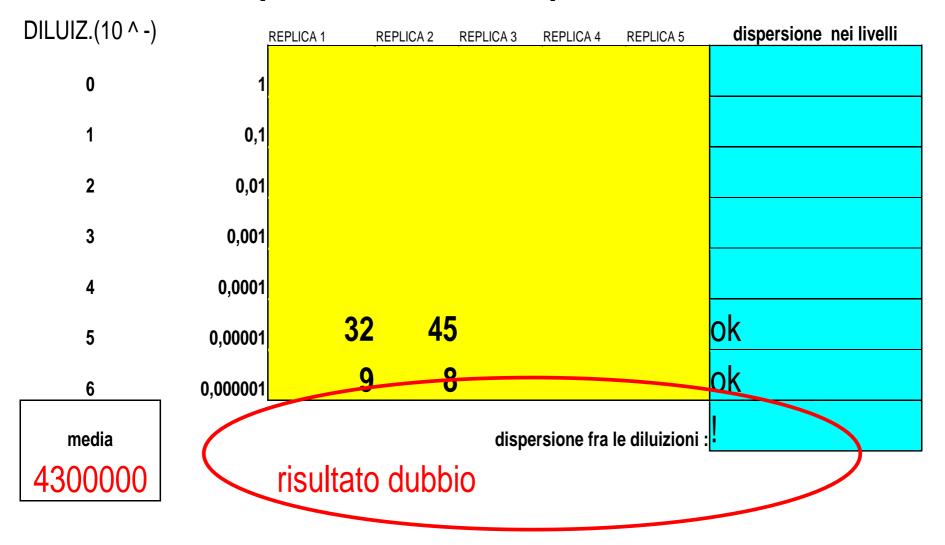
RIPETIBILITA' DEL METODO DI RIFERIMENTO (2)

campione	Dati	а	b	(a-b) ²	lim. Inf.	lim. Sup.
03433	log10UFC	6,30103	6,25527	0,00209		
	UFC	2000000	1800000		1125000	3557000
04060	log10UFC	6,342423	6,63347	0,08471		
	UFC	2200000	4300000		1237000	3912000
11708	log10UFC	6,39794	6,54407	0,02135		
	UFC	2500000	3500000		1406000	4446000
11716	log10UFC	3,913814	3,91908	2,8E-05		
	UFC	8200	8300		5000	15000
11739	log10UFC	5,792392	5,86923	0,0059		
	UFC	620000	740000		349000	1103000
11743	log10UFC	6,041393	6,20412	0,02648		
	UFC	1100000	1600000		619000	1956000
11774	log10UFC	4,832509	5,04139	0,04363		
	UFC	68000	110000		38000	121000
16629	log10UFC	5,633468	5,51851	0,01321		
	UFC	430000	330000		242000	765000
22504	log10UFC	6,041393	6,14613	0,01097		
	UFC	1100000	1400000		619000	1956000
37257	log10UFC	6,724276	6,63347	0,00825		
	UFC	5300000	4300000		2980000	9425000
log10UF	C totale	5,802064	5,87647	media ge	eometrica:	691000
media U	FC totale	1532620	1808830	Sr stimata: 0,10407		
	Sr attesa: 0,08					0,088


RIPETIBILITA' DEL METODO DI RIFERIMENTO (3)

Dettaglio delle piastre per alcuni campioni in doppio

		Dati	dil.	10 ⁻²	dil.	10 ⁻³	dil.	10 ⁻⁴	dil.	10 ⁻⁵	dil.	10 ⁻⁶
campione	replica	UFC	p1	p2								
03433	а	2000000							21	22	1	1
03433	b	1800000							18	12	5	5
04060	а	2200000					239	227	12	16		
04000	b	4300000							32	45	9	8
11708	а	2500000					268	244	20	19		
11700	b	3500000							39	32	4	2
11716	а	8200	78	86	8	8						
11710	b	8300	79	85	13	6						
11739	а	620000					68	54	3	11		
11739	b	740000					80	64	6	13		
11743	а	1100000					117	96	10	17		
11143	b	1600000					147	164	21	12		


RIPETIBILITA' DEL METODO DI RIFERIMENTO (4)

Campione 04060a sottoposto a test G²:

RIPETIBILITA' DEL METODO DI RIFERIMENTO (5)

Campione 04060b sottoposto a test G²:

RIPETIBILITA' DEL METODO DI RIFERIMENTO (6)

In assenza della doppia replica per il metodo di riferimento (2 campioni trattati in modo indipendente e confronto dei risultati finali per un valore di $r < 0.25 \log_{10}$) si è operato secondo quanto indicato in FIL-IDF 169:1994 9.2.2. "controllo dell'omogeneità di semina di piastre petri: test G_p^2 "

La selezione è stata condotta ad un livello di significatività statistica del 99% (margini di tolleranza ampi) e valutando unicamente la sovradispersione globale della serie di piastre, trascurando la sola dispersione fra diluizioni e la sottodispersione globale.

RIPETIBILITA' DEL METODO DI RIFERIMENTO (7)

situazione test G² prima e dopo lo screening delle diluizioni

laboratorio	< G ²	>G ²	>G ² dil	n°dati
1	1%	0%	0%	130
2	6%	1%	1%	109
3	2%	0%	2%	96
4	0%	10%	15%	131
5	2%	24%	27%	98
6	0%	13%	13%	176
7	0%	21%	26%	73
8	6%	3%	5%	104
9 (17%	3%	4%	114
10	0%	9%	9%	34
11	0%	8%	8%	106
12	1%	0%	0%	96
13	2%	2%	2%	108
14	0%	9%	11%	100
15	1%	6%	8%	79
totale	41	108	132	1554
totale %	3%	7%	8%	

laboratorio	< G ²	>G ²	>G ² dil	n°dati
1	1	0	0	130
2	7	0	0	109
3	2	0	0	96
4	0	0	3	131
5	4	12	12	98
6	1	1	5	176
7	0	6	5	73
8	4	0	1	104
9	15	0	5	114
10	0	1	2	34
11	1	0	2	106
12	0	0	0	96
13	2	1	1	108
14	0	2	3	100
15	1	3	4	79
totale	38	26	43	1554
totale%	2%	2%	3%	

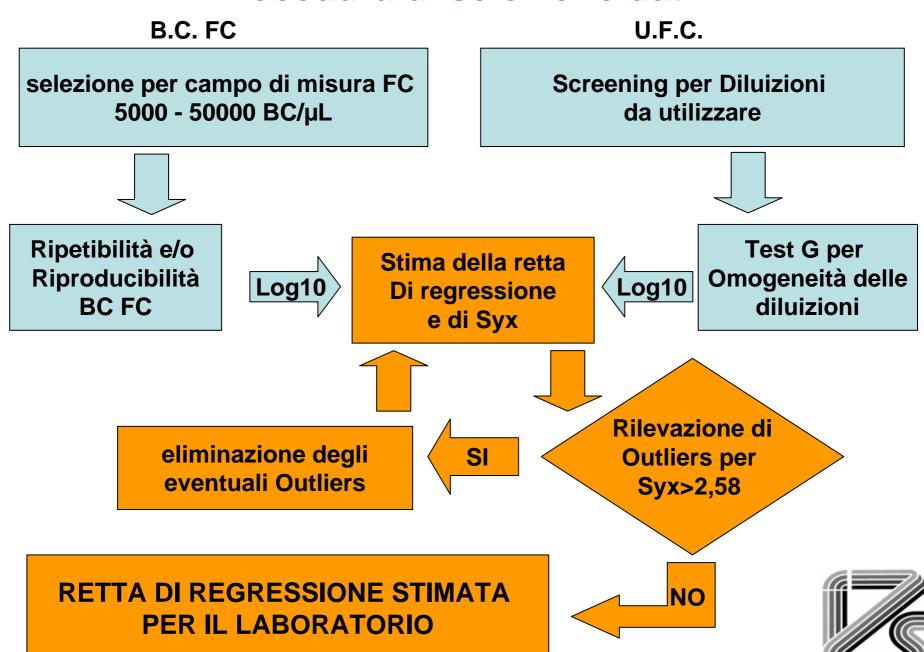
VERIFICA DEL RAPPORTO DI RIPETIBILITA' FRA METODI

$$\frac{S_r(riferimento)}{S_r(routine)} > 2 ; \frac{0.088}{0.04} > 2$$

Quindi: "...gli assi X e Y devono essere permutati prima di procedere alla stima della regressione (iso 16140:2003, 6.2.1.3.2.)"

ISO 21187:2004 5.5 CALCOLI (3)

5.5.2. VALIDITÀ DEI RISULTATI


- "...le coppie di dati per i quali i risultati del metodo di routine o i risultati del metodo di riferimento sono sotto il limite inferiore di quantificazione o sopra il limite superiore di quantificazione, per il rispettivo metodo, <u>devono essere</u> <u>esclusi dall'elaborazione</u>"
- ".... i risultati duplicati che eccedono i limiti di ripetibilità stabiliti, <u>devono essere esclusi</u>. Quando applicabile, i risultati che eccedono il limite stabilito per la riproducibilità, devono essere esclusi"
- "...Se la differenza fra i risultati duplicati è al di sotto dei limiti menzionati, <u>essi devono essere mediati prima della</u> <u>regressione</u>."

ISO 21187:2004 5.5 CALCOLI (4)

5.5.3. PRINCIPI DEL METODO DI REGRESSIONE

- "...la relazione di conversione dovrebbe essere calcolata in accordo con ISO 16140:2003, 6.1.2.4., 6.2.1.3. e allegato S"
- ".. un outlier è definito come una coppia di dati estremi, che normalmente appaiono in modo casuale per meno dell'1% dei casi. Per queste coppie di dati la deviazione assoluta differisce più di 2,58 $S_{y,x}$, dove $S_{y,x}$ è la deviazione standard residua per i punti stimati dalla regressione."
 - "... Gli outliers devono essere scartati, dopo di che la regressione dev'essere ricalcolata."

Procedura di selezione dati

Riepilogo selezione dati

			motivo selez	ione dati			
cod.Lab.	Altro	testG	rangeBC	ripet. BC	err.Sy,x	validi	Totale
1			4	1	8	117	130
2					6	103	109
3					2	94	96
4			1	2	2	126	131
5	7	10	4	2	3	72	98
6		1	1	2	5	169	176
7		5	1	2	3	62	73
8	2		3	2	5	92	104
9			4	3	5	102	114
10		1		2		31	34
11			3		5	98	106
12			1		3	92	96
13		1	4	5	1	97	108
14		2		1	4	93	100
15	1	3		1	2	72	79
Tot.	10	23	26	21	54	1420	1554

La retta di regressione (1)

Per i dati trasformati in log10....

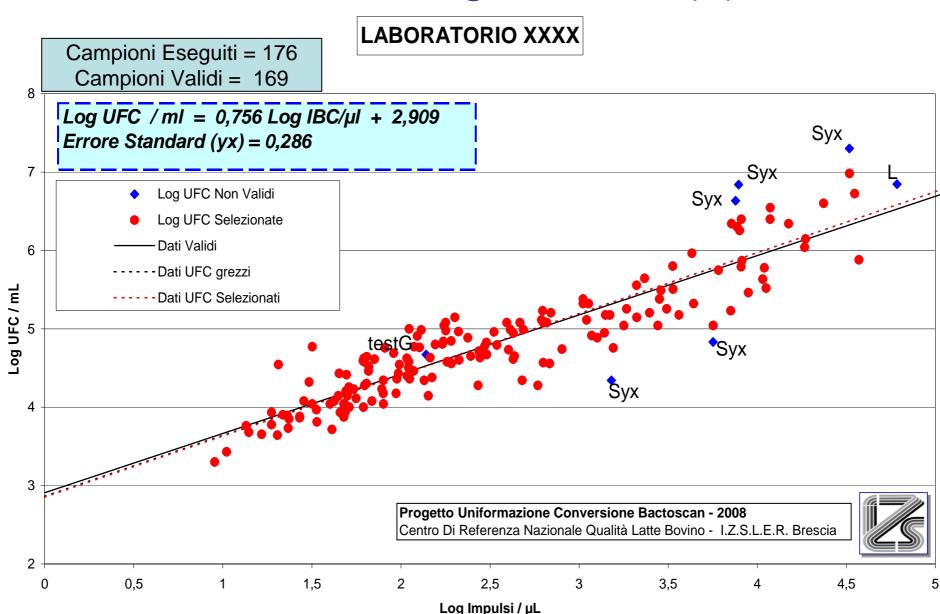
$$Log_{10}(U.F.C.) = a + b \cdot Log_{10}(B.C.)$$

Che riportata in scala lineare diventa....

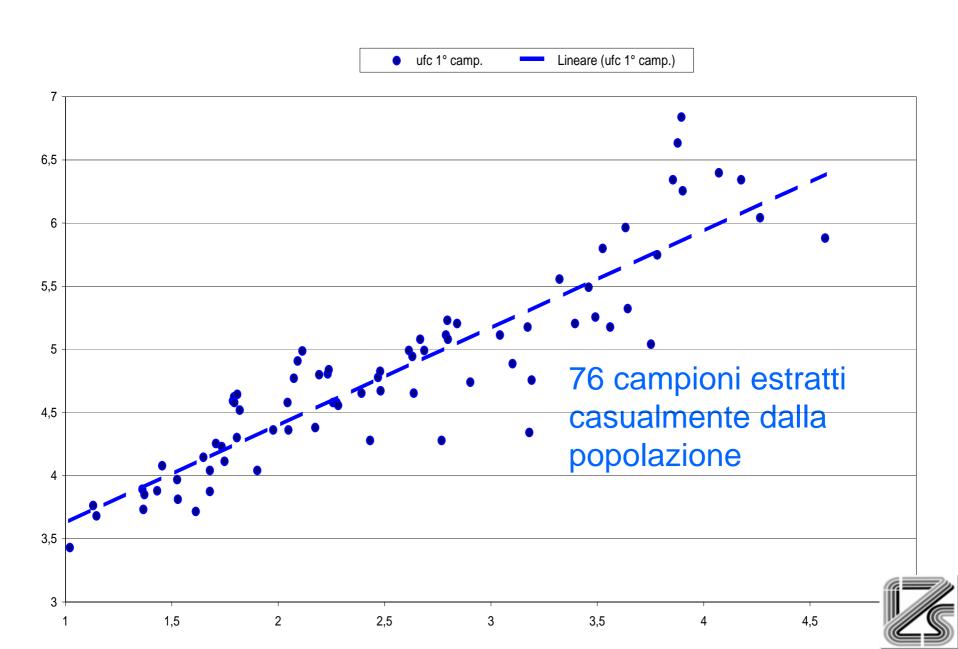
$$(U.F.C.) = 10^a \cdot (B.C.)^b$$

La retta di regressione (2)

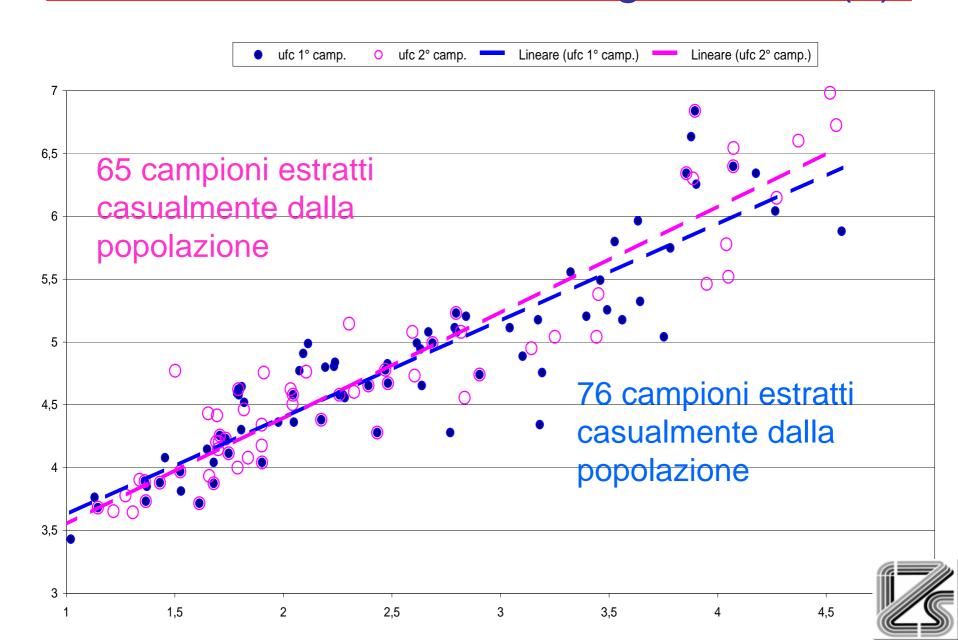
Un caso particolare....

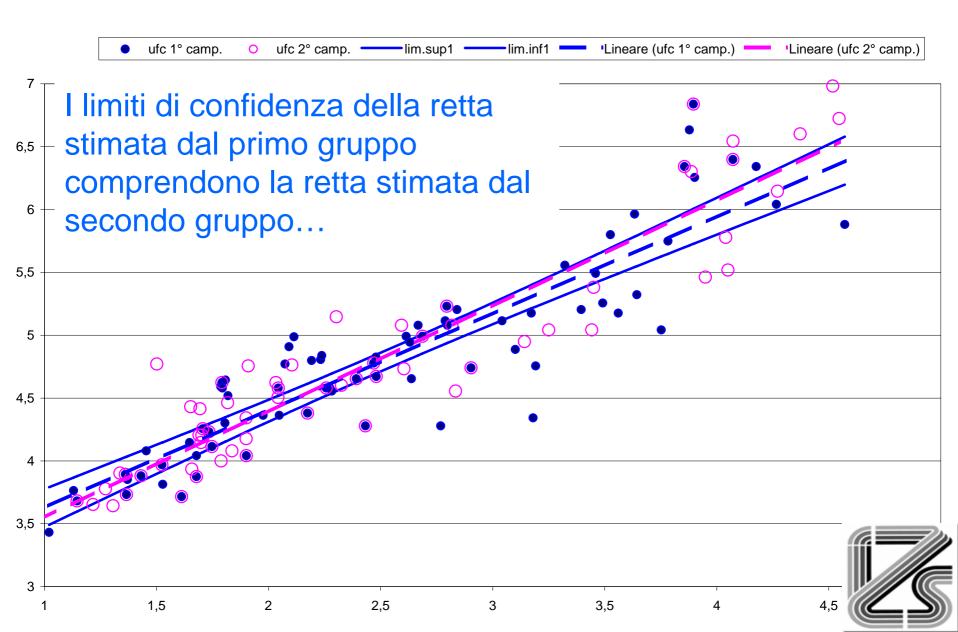

$$(U.F.C.) = 10^{2.435} \cdot (B.C.)^{\approx 1}$$

$$(U .F .C .) = \frac{1000}{3.67} \cdot (B.C .)$$

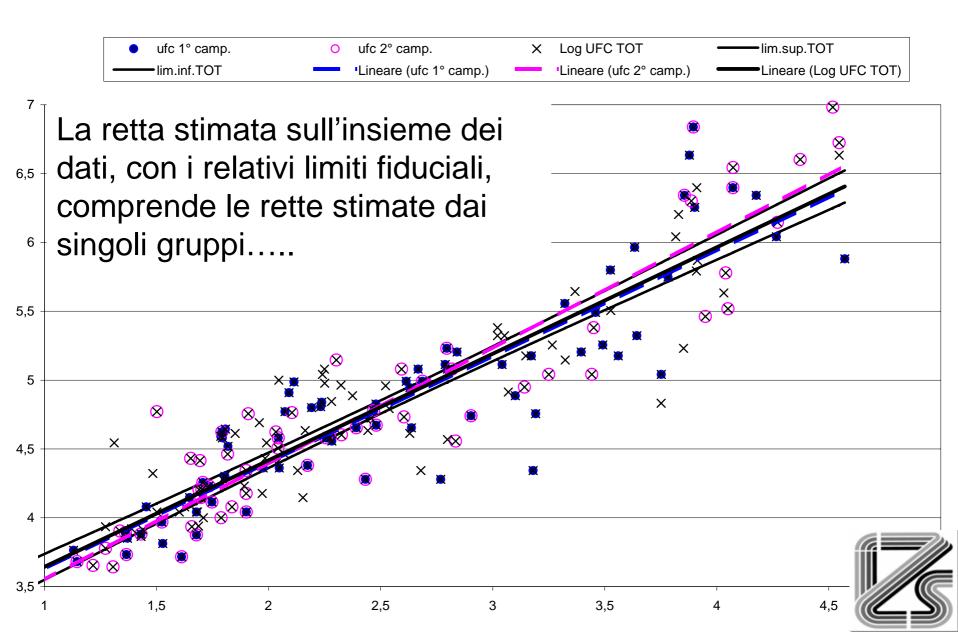

retta:	0,998	2,435
BC	stimaUFC1	stimaUFC2
10	3000	3000
100	27000	27000
500	134000	136000
1000	269000	272000
5000	1338000	1361000
10000	2673000	2723000
20000	5339000	5445000

retta:	0,943	2,871
BC	stimaUFC1	stimaUFC2
10	7000	7000
100	57000	74000
500	261000	372000
1000	501000	743000
5000	2286000	3715000
10000	4395000	7430000
20000	8450000	14860000


La retta di regressione (3)


Incertezza della retta di regressione (1)


Incertezza della retta di regressione (2)


Incertezza della retta di regressione (3)

Incertezza della retta di regressione (4)

Incertezza della retta di regressione (5)

Incertezza della retta di regressione (6)

I limiti di confidenza della retta stimata sono calcolati dalla relazione seguente:

$$Y_k \pm t_{(n-2,\alpha/2)} \cdot \sqrt{S_e^2 \cdot \left(\frac{1}{n} + \frac{\left(X_k - \overline{X}\right)^2}{\sum \left(X_i - \overline{X}\right)^2}\right)}$$

La loro ampiezza è direttamente proporzionale all'errore residuo di stima S_e^2 ed inversamente proporzionale alla numerosità dei dati ed alla devianza in X (anch'essa funzione della numerosità dei dati oltre che della dispersione dei campioni per la variabile indipendente)

Incertezza della stima delle U.F.C. (1)

i limiti di confidenza della predizione di un valore di U.F.C. a partire da un'osservazione di BC FC in X, secondo ISO 16140:2003 allegato R punto 6.1, sono calcolati da

$$CL(\langle y_{U/L} \rangle) = a + b \cdot x \pm t \cdot s(\langle y \rangle)$$

con

$$s(< y >) = S_{y:x} \cdot \sqrt{1 + \frac{1}{N} + \frac{(x - \overline{x})^2}{(N - 1) \cdot V_x}} > S_{y:x}$$

con "t" = valore di t di Student per un livello di confidenza α definito (solitamente 95%) e (N-2) gradi di libertà con N= numero di campioni utilizzati per stimare la regressione

Incertezza della stima delle U.F.C. (2)

per N sufficientemente grande (>150) il 2° e 3° membro sotto radice tendono a diventare trascurabili, t tende a 1.96 per P=95%, e la formula si semplifica in:

$$CL(\langle y_{U/L} \rangle) = a + b \cdot x \pm 1.96 \cdot S_{y:x}$$

Alcuni esempi:

			Fattor	e in radio	ce per			Per logX=	Pari a IBC=	
			diversi v	alori di X	e nº dati			2,5	316	
		t(95%,	X=	X=	X=		1.96			
lab	n° dati	n-2)	5log ₁₀	0log ₁₀	mediaX	t*max(s(<y>))</y>	Sy:x	StimaY	lim.sup.	lim. Inf.
4	128	1,98	1,08	1,03	1,01	0,42	0,38	169.000	442.000	65.000
5	75	1,99	1,06	1,08	1,01	0,96	0,88	41.000	373.000	4.000
6	174	1,97	1,02	1,02	1,00	0,65	0,63	64.000	286.000	14.000
10	31	2,05	1,28	1,19	1,02	0,82	0,61	75.000	491.000	11.000

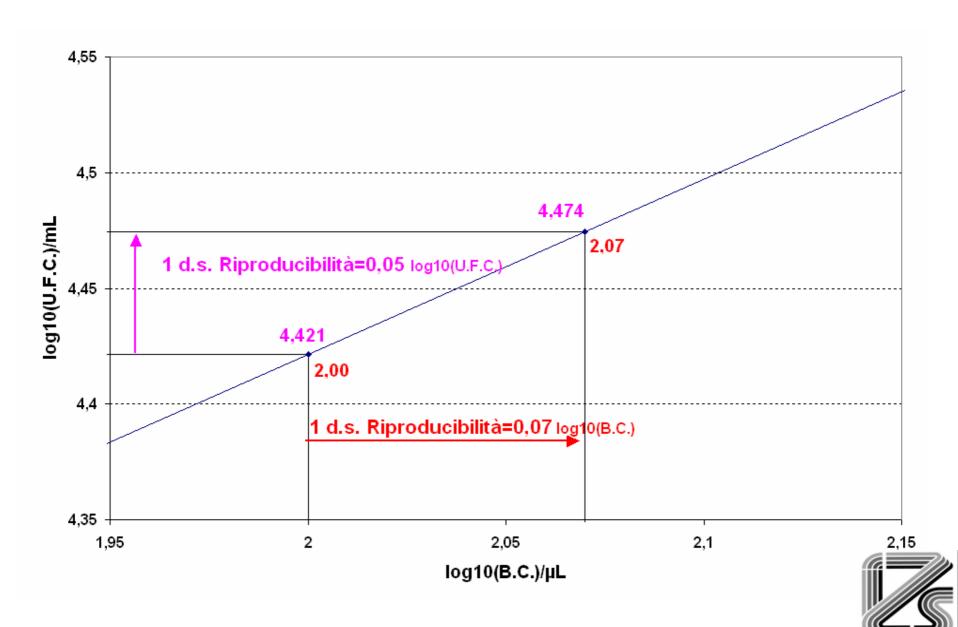
ISO 21187:2004 5.6: ESPRESSIONE DEI RISULTATI (1)

- "...la relazione di conversione può essere espressa da:
- A) un'equazione matematica per il range di validità
- B) Una tabella, con i valori equivalenti in unità di metodo di routine e unità di metodo di riferimento
- C)punti equivalenti (specifici valori espressi in unità del metodo di routine che corrispondono ad esempio a valori limite normati espressi in unità di riferimento)"

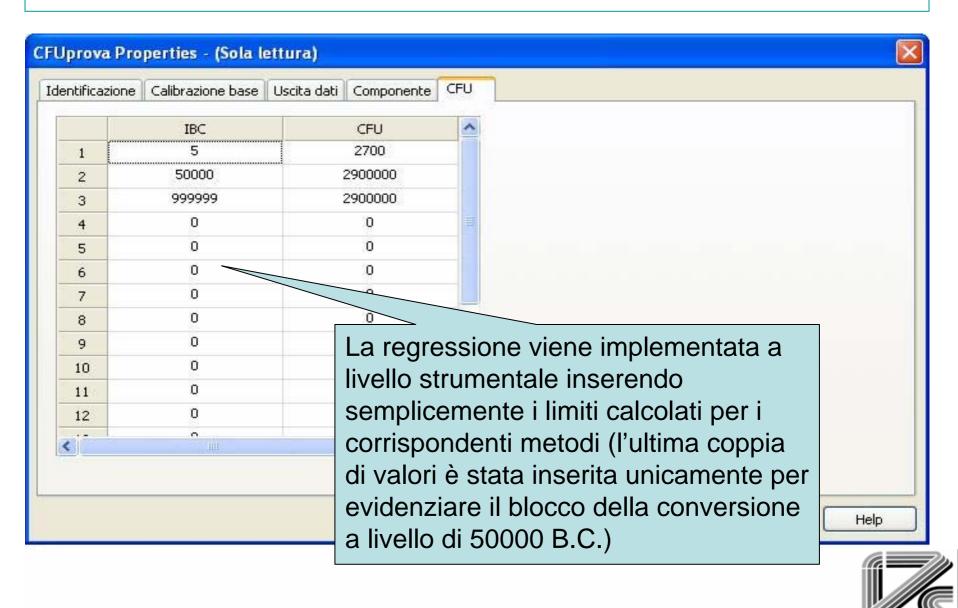
Ad esempio per la relazione:

$$\log_{10}(U.F.C.) = 2.909 + 0.756 \cdot \log_{10}(B.C.)$$

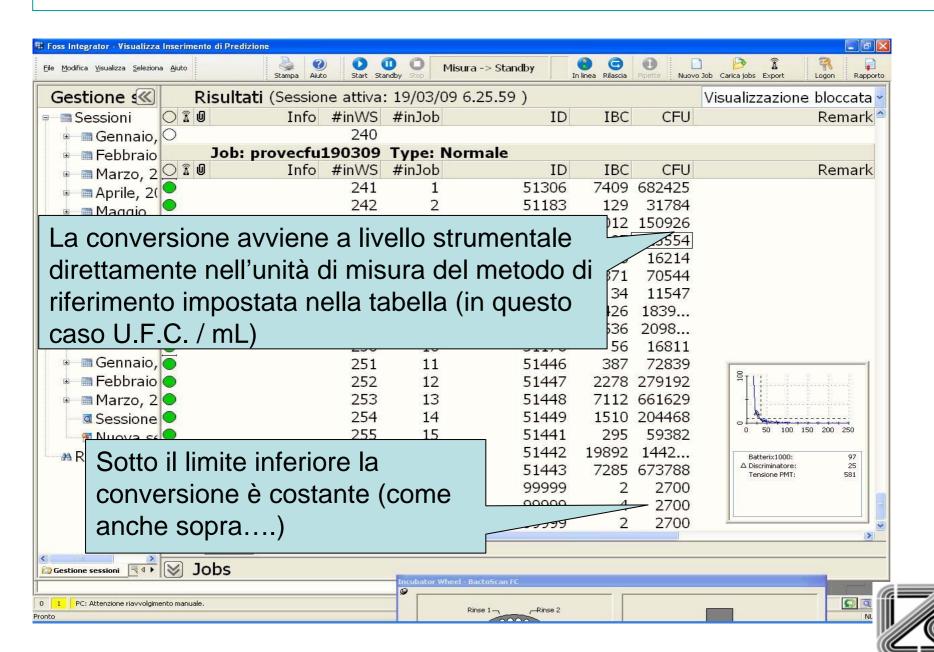
BC FC/µL	U.F.C. stimate/mL
5	2700
50000	2900000



ISO 21187:2004 5.6: ESPRESSIONE DEI RISULTATI (2)


Dalla relazione possono essere derivati gli altri parametri associati al metodo di routine, espressi in unità del metodo di riferimento, come ad esempio i parametri di precisione, ottenibili moltiplicando i corrispondenti valori espressi in log10(B.C.) per la pendenza della retta stimata.

	B.C. F.C.		U.F.C. Stimate				
livello	ripetibilità	ripetibilità riproducibilità		ripetibilità	riproducibilità		
B.C./μL	d.s.	d.s.	U.F.C./mL	d.s.	d.s.		
10	0,07	0,11	4600	0,05	0,08		
50	0,05	0,07	16000	0,04	0,05		
>201	0,04	0,06	>45000	0,03	0,05		


ISO 21187:2004 5.6: ESPRESSIONE DEI RISULTATI (3)

GESTIONE STRUMENTALE DELLA REGRESSIONE (1)

GESTIONE STRUMENTALE DELLA REGRESSIONE (2)

GESTIONE STRUMENTALE DELLA REGRESSIONE (3)

Job name: provecfu190309

Collection date: 19/03/09

Job type: NORMAL

pendenza	0,75623437
intercetta	2,908875439

#inWS	#inJob	ID	IBC	CFU	CFU stime retta
241	1	51306	7409	682.425	684.417
242	2	51183	129	31.784	31.987
243	3	51694	1012	150.926	151.878
244	4	51695	97	25.554	25.783
245	5	51696	53	16.214	16.324
246	6	51697	371	70.544	71.109
247	7	51698	34	11.547	11.669
248	8	51699	27426	1.839.802	1.841.478
249	9	51700	32636	2.098.968	2.100.333
250	10	51176	56	16.811	17.018
251	11	51446	387	72.839	73.416
252	12	51447	2278	279.192	280.526
253	13	51448	7112	661.629	663.566
254	14	51449	1510	204.468	205.555
255	15	51441	295	59.382	59.792
256	16	51442	19892	1.442.357	1.444.388
257	17	51443	7285	673. 788	675.737
258	18	99999	2	2.700	1.369
259	19	99999	4	2.700	2.313
260	20	99999	2	2.700	1.369